
1995

S TA N DA R D

M U M P S

P O C K E T G U I D E

FIFTH EDITION

FREDERICK D. S. MARSHALL

for Octo Barnett,

Bob Greenes,

Curt Marbles,

Neil Papalardo,

and Massachusetts General Hospital

who gave the world MUMPS

and

for Ted O’Neill,

Marty Johnson,

Henry Heffernan,

Bill Glenn,

and the MUMPS Development Committee

who gave the world standard MUMPS

T H E

19 9 5 S TA N DA R D

M U M P S

P O C K E T G U I D E

FREDERICK D. S. MARSHALL

MUMPS BOOKS
• seattle •

2010

THE 1995 STANDARD MUMPS POCKET GUIDE

fifth edition of the mumps pocket guide

second printing

MUMPS BOOKS

an imprint of the Vista Expertise Network

819 North 49th Street, Suite 203 ! Seattle, Washington 98103

www.vistaexpertise.net

info@vistaexpertise.net

(206) 632-0166

copyright © 2010 by frederick d. s. marshall

All rights reserved.

V I S t C

E X P E R T I S E N E T W O R K

C O N T E N T S

1 ! I N T R O D U C T I O N ! 1

1 . 1 ! Purpose ! 1

1 .2 ! Acknowledgments ! 1

2 ! O T H E R R E F E R E N C E S ! 2

3 ! T H E S U I T E O F S T A N D A R D S ! 3

4 ! S Y S T E M M O D E L ! 5

4.1 ! Multi-processing ! 5

4.2 ! Data ! 5

4.3 ! Code ! 7

4.4 ! Environments ! 7

4.5 ! Pack ages ! 7

4.6 ! Char acter Sets ! 7

4.7 ! Input/Output Devices ! 8

5 ! S Y N T A X ! 9

5. 1 ! Metalanguage Element Index ! 9

6 ! R O U T I N E S ! 15

6.1 ! Routine Structure ! 15

6.2 ! Lines ! 15

6.3 ! Line References ! 17

6.4 ! Execution ! 19

6.4. 1 ! the process stack ! 19

6.4.2 ! block Processing ! 19

6.4.3 ! error codes ! 21

7 ! E X P R E S S I O N S ! 2 3

7. 1 ! Values ! 24

7. 1 . 1 ! r epresentation ! 24

7. 1 .2 ! interpretation ! 25

7.2 ! Var iables ! 26

7.2 .1 ! local var iables ! 26

7.2.2 ! global var iables ! 26

7.2.3 ! special var iables ! 27

7.3 ! Structured System Var iables ! 27

7.3. 1 ! list ! 28

7.4 ! Extr insic Var iables & Functions ! 30

7.5 ! External Var iables & Functions ! 30

7.6 ! Intr insic Special Var iables ! 3 1

7.6. 1 ! list ! 3 1

7.7 ! Intr insic Functions ! 33

7.7. 1 ! list ! 34

7.8 ! Oper ators ! 42

7.8. 1 ! list ! 42

7.8.2 ! pattern matching ! 47

7.8.3 ! indirection ! 48

8 ! C O M M A N D S ! 5 2

8.1 ! Gener al Rules ! 52

8. 1 . 1 ! basic syntax ! 52

8. 1 .2 ! post-conditionals

(command/argument) ! 52

8. 1 .3 ! t imeouts ! 52

8. 1 .4 ! par ameter passing ! 53

8.2 ! List of Commands ! 54

9 ! C H A R A C T E R S E T P R O F I L E S ! 6 9

9.1 ! Char acter Sets Ascii & M ! 69

9.1 . 1 ! table ! 69

9.2 ! Char acter Set J is90 ! 71

C O L O P H O N ! 7 2

1 ! I N T R O D U C T I O N

1.1 ! P U R P O S E

This booklet summarizes the mumps programming language

for mumps programmers seeking quick reference. It

summarizes all the variables, operators, functions, commands,

and other elements of mumps, except for those described in

other standards (gks, jis90, mwapi, omi, sql, tcp-ip, x3.64, and

X-Windows).

1. 2 ! A C K N O W L E D G M E N T S

This fifth edition, compiled by Frederick D. S. Marshall, reflects

the 1995 mumps standard.

The following individuals reviewed and critiqued earlier

drafts of this guide: Wally Fort, Kristi Hanson, Dave Holbrook,

Sandra Reynolds, Beverly Marshall Saling, Kate Schell, George

Timson, Maury Pepper, Larry Landis, Duglas Kilbride, and

especially David Marcus. Thanks also go to Jack Bowie, Robert

Greenfield, Dan Schullman, David Sherertz, Robert Stimac,

George Timson, Tony Wasserman, and Jerry Wilcox, all of

whom contributed substantially to previous editions.

Special thanks go to Thomas Salander, author of the

fourth edition (1991); Joel Achtenberg, author of the third and

second editions (1978 and 1983); and Joan Zimmerman, who

wrote the original Pocket Guide under grant number hs-01540

from the National Center for Health Services Research,

Department of Health, Education, and Welfare.

1

2 ! O T H E R R E F E R E N C E S

For an authoritative definition of mumps consult the standard

itself: X11.1-1995 by the Mumps Development Committee. The

third edition of the 1995 standard, ISO/IEC 11756:1999,

Information Technology—Programming Languages—M, is available

from the International Organization for Standardization (iso)

and the International Electrotechnical Commission (iec). The

fourth edition, MUMPS 1995, will be published by Mumps

Books in 2010.

The seventh and significantly improved edition of the

mumps pocket guide, MUMPS 1995 Pocket Guide, will be

published by Mumps Books in 2010.

For an in-depth description of mumps complete with

extensive examples, consult the MUMPS 1995 Reference

Manual, which will be published by Mumps Books 2011.

For a self-instruction workbook for students of mumps,

consult the MUMPS 1995 Workbook, which will be published by

Mumps Books in 2011.

For a textbook for teaching mumps, consult M

Programming: A Comprehensive Guide by Richard Walters.

For information about these and other mumps references,

contact Mumps Books, 819 North 49th Street, Suite 203,

Seattle, Washington, usa, www.vistaexpertise.net,

info@vistaexpertise.net, (206) 632-0166.

2

3 ! T H E S U I T E O F S T A N D A R D S

The mumps programming language is implemented according

to a standard created and updated by the Mumps

Development Committee (mdc), which then submits it for

approval to the American National Standards Institute (ansi),

the National Institute of Standards and Technology (nist), and

the International Organization for Standards (iso). The 1977

and 1984 standards were approved by ansi, the 1990 standard

was approved by all three bodies, and the 1995 standard

standard was approved by ansi and iso.

Beginning with the 1995 standard, mumps was defined by

a suite of standards:

x11.1: The M Programming Language

x11.2: The Open Mumps Interconnect

x11.3: The Graphical Kernel System

x11.4: The X-Window Binding

x11.6: The M Windowing Api (mwapi)

The mumps standard describes some features by referring

to other, independent standards, and explaining how to

access those features in mumps. Such descriptions bind the

mumps standard to other standards, rather than duplicate the

work of those standards. The 1995 standard includes six

bindings: gks, jis90, sql (x3.135), tcp-ip, x3.64, and X-

Windows.

The mumps standard describes most language elements in

detail; for some it leaves certain portions undefined, left up to

the implementer. Thus, although use of those features is

standard, it is not portable across implementations.

Developers wishing to write code that is completely portable

across all mumps implementations should avoid the use of

non-portable features.

Section 2 of the x11.1 standard defines the limits adhered to

3

by portable mumps code. Throughout this pocket guide,

portability guidelines are given within square brackets [like

this].

Mumps implementers describe those parts of their

implementations that do not meet the standard in a

document called the conformance clause.

4

4 ! S Y S T E M M O D E L

More than just a programming language, mumps provides a

programming and execution environment, a database, a

system of interfacing between multiple programming

languages, and a multi-processing system. The mumps

programming language is an imperative (command-oriented),

dynamic, late-binding language oriented toward manipulation

of strings and sparse arrays with string subscripts.

4 .1 ! M U LT I - P R O C E S S I N G

Mumps systems are designed around multi-processing, in

which multiple users share the same computing resources.

Each user of a mumps system is assigned a process with a

unique id ($job), within which the user can manipulate private

or shared data. Each process includes a set of structured

system variables and intrinsic special variables that provide

the process with information about its characteristics and

current status, a process stack to aid in executing code,

storage for the currently executing routine, and a symbol

table in which to store private data.

Mumps provides ways to equitably share data,

input/output devices, and other common resources, as well

as built-in features that the programmer can use to

synchronize the activities of separate processes (lock), to

generate new processes (job), or to end the current process

(halt).

4 . 2 ! D A T A

Each process can create and manipulate its own private data

in local variables. Unlike most programming languages,

mumps extends the use of variables to include what other

systems do with files; mumps systems store shared data in

5

global variables. Local variables are temporary, lasting only

for the duration of the process, but global variables last

indefinitely, beyond the life of any single process.

Mumps variables need not be declared before use, but are

instead created dynamically by giving them values. Any

variable not yet created has an undefined value, and mumps

provides two special functions for dealing with variables that

may be undefined ($data and $get). Attempts to retrieve

directly an undefined value cause an error.

Variables are not statically typed, which would restrict

them to storing only specific kinds of values; they are

dynamically typed. Dynamic typing lets variables be of any

data type at any time, changing types arbitrarily and without

declaration during execution. Mumps accommodates this by

treating all data as variable-length strings, but interpreting

those strings as the data types appropriate to the operations

being performed upon them. Accordingly, mumps provides

powerful built-in string manipulation features.

In addition, all variables can be subscripted arrays. These

arrays are not statically declared, but are dynamically created

and modified at run time.

Subscripts need not contain contiguous ranges of numeric

subscripts, but instead can be sparsely populated with only

the subscripts desired. Subscripts in mumps can have any

string value, and are automatically collated.

Thus, sorting, which is usually a dominant activity in

database software, is built into mumps data. Mumps provides

extensive array and tree manipulation features. As a result,

mumps data structures are far more dynamic than in most

languages, performing a significant portion of the computing

usually reserved for code.

6

4 . 3 ! C O D E

Processes execute mumps code in modules called routines,

each of which can execute other routines as needed.

Additionally, mumps increases the flexibility of the code by

blurring the distinction between code and data. Any line of

code can be fetched as data ($text), and assuming its value

adheres to mumps code syntax, any variable may be executed

as code (xecute). In addition, mumps routines can leave

fragments of code unresolved until run time (@, indirection).

This dynamic interaction between the code and data results in

highly flexible code whose exact behavior is not bound until

run time.

4 . 4 ! E N V I R O N M E N T S

Mumps systems collect code and data into environments. As

each new mumps process is created it is assigned an

environment, which dictates the capabilities and limitations of

that process. Some routines and globals are accessible by

other environments, while others are restricted. In this way

environments supply both security and modularization to

complex mumps systems.

4 . 5 ! PA C K A G E S

Mumps processes are not limited to mumps code in their own

environments. Routines in other environments, or code

external to mumps systems can be bound up into external

packages callable by the mumps process, and code written in

other languages can even be embedded within mumps

routines.

4 . 6 ! C H A R A C T E R S E T S

Mumps can operate upon multiple character sets as well,

reducing the language barrier between computer systems

7

and people of different languages. Each character set has its

own collation system. The 1995 standard includes three

character set profiles: m, ascii, and jis90.

Although each system has a default character set, the

system’s processes, routines, globals, and devices can all

operate under different character sets, so that conceivably

two people speaking different languages could work on the

same mumps system in their own language.

4 . 7 ! I N P U T / O U T P U T D E V I C E S

Each mumps process is assigned a principal input/output

device ($principal), but can gain ownership of others (open),

change at any time the current device for input and output

(use), identify the current device ($io), and release ownership

of devices (close). Due to the use of a single data type, the

string, only two commands are needed for input (read) and

output (write).

The read and write commands share some built-in device

controls (such as form feed, line feed, and tabbing) for

formatting output. However, additional device controls are

control mnemonics bound up into mnemonic spaces. Devices

can be opened under different mnemonic spaces that dictate

the control mnemonics available at any time.

8

5 ! S Y N T A X

The mumps standard uses a metalanguage to describe its

language features. Each element of this metalanguage is

defined once in the standard, and then used by name

thereafter. The following index describes each metalanguage

element and identifies where in the x11.1 standard it is defined.

5 .1 ! M E T A L A N G U A G E E L E M E N T I N D E X

element description, x11.1 page #

: : = metalanguage operator: definition, 6

[] metalanguage operator: option, 6

| | metalanguage operator: alternation,

6

. . . metalanguage operator: repetition, 6

actual actual argument, 47

actuallist actual argument list, 47

actualname actual argument name, 47

algoref algorithm reference, 17

alternation alternation, 42

argument argument of a command, 44

binaryop binary operator, 39

charset character set, 67

charsetexpr character set expression, 17

closeargument close argument, 49

command command, 43

commands commands separated by cs, 8

commandword command word, 43

comment comment, 8

control control character, 7

controlmnemonic control mnemonic, 66

CR carriage return character, 6

cs command separator, 8

9

element description, x11.1 page #

device device, 18

deviceattribute device attribute, 49

devicekeyword device keyword, 49

deviceparam device parameter, 49

deviceparameters device parameters, 49

devicexpr device expression, 18

digit decimal digit character, 7

dlabel indirect label (evaluated label), 46

doargument do argument, 49

ecode error code, 25

emptystring empty string, 17

entryref entry reference, 46

environment set of distinct names, 15

eoffset error offset, 38

eol end-of-line, 7

eor end-of-routine, 7

exfunc extrinsic function, 23

exp exponent, 21

expr expression, 11

expratom expression atom, 12

expritem expression item, 21

exprtail expression tail, 39

externalroutinename external routine name, 47

externref external reference, 47

extid external identifier, 11

extsyntax external syntax, 11

exttext external text, 11

exvar extrinsic variable, 23

fncodatom $fnumber code atom, 31

fncode $fnumbercode, 30

fncodexpr $fnumber code expression, 30

fncodp $fnumber code p, 31

10

element description, x11.1 page #

fncodt $fnumber code t, 31

FF form feed character, 6

formalline formal line (line with formal list), 8

formallist formal argument list, 8

format i/o format code, 65

forparameter for argument, 51

function intrinsic function, 29

glvn global or local variable name, 12

gnamind global name indirection, 15

gotoargument goto argument, 52

graphic graphic character (character with

visible representation), 7

gvn global variable name, 15

gvnexpr global variable name expression, 18

hangargument hang argument, 53

ident identification character, 7

ifargument if argument, 53

intexpr expression, value interpreted as an

integer, 23

intlit integer literal, 21

jobargument job argument, 53

jobparameters job parameters, 53

killargument kill argument, 54

L metalanguage operator: list (list of), 6

label label of a line, 8

labelref label reference, 46

leftexpr left expression, 61

leftrestricted left restricted, 61

levelline level line (line without formal list), 8

LF line feed character, 6

li level indicator, 8

line line in routine, 7

11

element description, x11.1 page #

linebody line body, 8

lineref line reference, 46

lname local name, 54

lnamind local name indirection, 12

lockargument lock argument, 54

logicalop logical operator, 41

ls label separator, 8

lvn local variable name, 12

mant mantissa, 21

mergeargument merge argument, 56

mnemonicspace mnemonic space, 58

mnemonicspacename mnemonic space name, 58

mnemonicspec mnemonic space specifier, 58

name name, 7

namevalue name value, 28

newargument new argument, 57

newsvn new special variable name, 57

noncomma non-comma, 25

nonquote non-quote (any graphic character not

equal to quote), 21

nref name reference, 55

numexpr expression, value interpreted

numerically, 23

numlit numeric literal, 21

openargument open argument, 57

openparameters open parameters, 58

packagename package name, 47

patatom pattern atom, 42

patcode pattern code, 42

patnonY pattern non-y character, 42

patnonYZ pattern non-y-or-z character, 42

patnonZ pattern non-z character, 42

12

element description, x11.1 page #

pattern pattern, 41

place place, 38

postcond post-conditional, 45

processid process identifier, 19

processparameters process parameters, 53

readargument read argument, 60

readcount read count, 60

relation relational operator, 40

repcount repeat count in pattern atom, 42

restartargument restart argument, 64

rexpratom restricted expression atom, 12

rgvn restricted global variable name, 15

rlvn restricted local variable name, 12

routine routine, 7

routinebody routine body, 7

routinehead routine head, 7

routinename routine name, 7

routineref routine reference, 19

routinexpr routine expression, 19

setargument set argument, 61

setdestination set destination, 61

setev set error variable, 61

setextract set $extract, 61

setleft set left, 61

setpiece set $piece, 61

SP space character, 6

ssvn structured system variable name, 16

stackcode $stack code, 37

stackcodexpr $stack code expression, 37

strlit string literal, 21

sublit subscript literal, 28

subnonquote subscript non-quote character, 28

13

element description, x11.1 page #

svn special variable name, 24

system system, 20

systemexpr system expression, 20

textarg $text argument, 38

timeout time-out specification, 45

transparameters transaction parameters, 64

truthop truth operator, 40

tsparam tstart parameter, 64

tstartargument tstart argument, 64

tvexpr expression, value interpreted as a

truth-value, 23

unaryop unary operator, 27

useargument use argument, 65

V metalanguage operator: evaluation, 6

writeargument write argument, 65

xargument execute argument, 66

14

6 ! R O U T I N E S

6 .1 ! R O U T I N E S T R U C T U R E

Mumps software is written in routines, each of which consists

of a head and a body.

A routine head is the name of the routine followed by a

carriage return and a line feed. The first character of the name

must be either a letter (upper or lower case) or the “%”

character; if the name is longer than one character, the

remaining characters can be letters and digits (e.g., VanGogh,

picasso3, %, %Hopper, or %42, but not 42, wyeth%, or 2blake).

[For portability, routine names should be distinguished by their first

eight characters and should not contain lower-case letters.]

The routine body is one or more lines and a carriage

return and line feed at the end of the routine. [For portability,

no routine may be more than 10,000 characters long.]

6 . 2 ! L I N E S

Each line in a mumps routine consists of a line-start indicator

(one or more space), optionally preceded by a line label,

followed by zero or more commands with their associated

arguments, optionally followed by a comment, and the line

must end with an end-of-line indicator (a carriage return and

line feed).

Commands are separated by one or more spaces, but may

have additional spaces between them. The minimum

separation for an argumentless command is two characters.

Spacing between the final command and the comment, when

one occurs, is the same as between commands. If the line

contains commands but no comment, no spaces can occur

after the last command.

The first character of a comment is a semi-colon, and the

15

remaining characters are not treated as executable mumps

code.

Line labels must be unique within a routine. A line label

may be either an integer or have the same syntax as routine

names have. Two or more lines in one routine starting with

the same label cause error m57. [For portability, labels, like

routine names, should be distinguished by their first eight

characters and should not contain lower-case letters.]

Beyond these rules, all routine lines fall into one of two

categories, level lines or formal lines, each of which has

additional characteristics. Most lines are level lines. After the

line-start indicator, level lines have zero or more level

indicators, each of which consists of a period followed by

zero or more spaces. The level of a level line is the number of

level-indicator dots at the start of the line body plus one.

Some examples of level lines are:

VANRIJN ; next line has an empty line body

Raphael

TITIAN I PAINTER="Klee" D Q

KLEE . R DALI

GRECO . R KAHLO D

12 . . R KLIMT

%5 ..; what about Renoir?

Formal lines are used for parameter passing, and have a

level of one (that is, no dots). They require the label, which is

immediately followed by a list of formal parameters (an open

parenthesis, a list of variable names, and a close parenthesis).

The variables must be unsubscripted local variables. Having

any variable named more than once in the same formal

parameter list causes error m21. Formal lines must be called

through an extrinsic or parameter passing; trying to do

otherwise causes error m11. Some examples of formal lines

are:

16

COUNT() Q ^ARTIST("COUNT") ; extrinsic variable

MONET(PAINTING) N YEAR D LOOKUP Q YEAR ; exfunc

%ADD(ARTIST) D NEW Q ; for use with DO or JOB

The standard suggests but does not require that the first

line of a routine have a label equal to the routine name, have

no commands, and have a comment that lists a contact, the

routine’s position within the hierarchy of its package, the date

and time it was last changed, and/or a description. Here are

some examples (see Annex E on page 101 of x11.1 for details):

KOLLWITZ ;

DEGAS ;ART@VA.GOV,ART,FRENCH,IMPRESS

ESCHER ;ART;19960210;query handler for MCE

[For portability, the length of a routine line, including any label

and comment, is limited to the MUMPS string-length limit of 255

characters. The carriage return and line feed at the end of each line

are not counted in this limit.]

6 . 3 ! L I N E R E F E R E N C E S

Whether identifying a starting place for execution or a

location to examine, mumps code can refer to routine lines

during execution. By controlling the kinds of line references

allowed in certain operations, mumps restricts dynamic access

into routines.

Label references can only identify code on lines that have

labels, and must explicitly name either the label or the

routine, possibly both. If only the routine is named, it

implicitly refers to the first line of the routine, which must then

have a label. If only a label is named, it implicitly refers to the

current routine. If the process has access to another

environment, it can include an environment in the routine

reference (e.g., list^|"baroque"|painter). Referencing a non-

existent environment causes error m26. References to a non-

existent label cause error m13. Do and job commands that

17

pass parameters to the invoked code can only use label

references, as can extrinsic function and variable names (e.g.,

$$count^painter but not $$davinci+3^painter)

Entry references expand on label references in two ways:

by allowing label and routine names to be variable (through

the use of indirection: @artist^painter, mchlnglo^@medium,

or @artist^@medium; see section 7.8.3 below), and by

allowing the use of positive offsets to refer to lines without

labels (e.g., @artist+10^@medium, list+1^painter, and

print+5). Use of a negative offset causes error m12. Offsets so

large they do not refer to an existing line cause error m13. The

do and job commands when not passing parameters, and the

goto command, can all use entry references, letting them

execute code from any line of any routine.

Text references, used only by the $text function, expand

on entry references by removing the need to base line

references on a label, letting $text refer to lines in routines

without knowing more than the name. Lines can be referred

to as offsets from labels or as absolute line counts (e.g., +10,

+1^@medium, or paint+9^medium, paint^medium), and these

absolute references can be indirected in various ways (e.g.,

+line^@routine, and @textref). Absolute line counts less

than zero cause error m5.

Code in external packages bound to mumps can be

referred to by an external reference, which takes the form of

an & character followed by an external routine name in the

form either of a name or name^name (e.g., &pi). Optionally, a

package name and a period may come before the external

routine name (e.g., &math.pi). The do command can use

external references to invoke external code. The names of

external variables and functions are also external references

(see section 7.5).

[External references are not portable.]

18

6 . 4 ! E X E C U T I O N

Mumps systems usually execute code in blocks of lines, but

transaction processing and error processing change the rules

of execution. The Mumps Windowing Api introduces a fourth

execution mode, event processing, described in that

standard. All four mumps execution modes depend upon the

process stack.

6.4. 1 ! The Process Stack

The ability to stack context is essential to the execution of

modular code. Mumps implements it in three ways: the do

and xecute commands, references to extrinsic functions and

variables, and error processing. All three, when they occur

within a process, push another level on its process stack. The

collection of information (called a frame) pushed on the stack

is used to restore processing and state information when the

new execution level finishes.

All three kinds of frames push onto the stack the

execution level, and the execution location of the command

or expression that created the new frame. The frames of

extrinsics and argumentless do commands also push the

current value of the $test variable. So, for example, after

completing an argumentless do, $test regains the value it had

before the do command. Error frames push information about

error conditions during error processing.

Variable scoping features of mumps, such as the new

command, also use the process stack to save information for

later recovery when the current execution level completes.

6.4.2 ! Block Processing

Under normal conditions mumps processes code in blocks of

lines at the same line level. Lines with a greater level are not

part of the current block, and are ignored.

19

The execution frames for blocks are pushed on the stack

in one of two ways. The execution frame at the first level of

the process stack is pushed when the process is created,

whether by signing onto a mumps system or through

execution of a job command. Blocks of code can be nested by

the do and xecute commands or by references to extrinsic

variables or functions; nesting pushes the execution frames of

the new blocks onto the process stack.

[For portability, MUMPS code should not use more than 127

levels of the process stack.]

When a block’s execution frame is pushed on the stack,

the block is executed in a simple flow. The lines within each

block are executed one at a time, beginning with the first line

in the block and continuing down sequentially. Within each

line, commands are executed left to right.

Four commands modify the flow of execution within a

block. If and else conditionally skip execution of the rest of

the line. For repeats execution of the rest of the line. Goto

repositions the flow at the start of another line within the

block.

Execution frames are popped from the process stack

when their code blocks end. Blocks automatically end after

execution of the last line in the block, or they can be ended in

mid-block by the quit command, when used outside the

scope of a for command.

When an execution frame is popped from the stack,

execution resumes where it left off, in mid-expression or mid-

line, depending on how the block was called. In the case of

extrinsics, the block was called during the evaluation of the

expression that contains the extrinsic variable or function, so

mumps uses the extrinsic’s returned value to continue

expression evaluation.

Note that goto commands at line level one can reposition

2 0

the flow of execution to the start of any other line at level

one, even in other blocks or other routines. Taken to

extremes, this can result in a flow of execution not particularly

block-oriented, though the block processing rules of

execution still apply.

6.4.3 ! Error Codes

Code Meaning

m1 naked indicator undefined

m2 invalid combination with $fnumber code atom p

m3 $random seed less than 1

m4 no true condition in $select

m5 line reference less than zero

m6 undefined local variable

m7 undefined global variable

m8 undefined intrinsic special variable

m9 divide by zero

m10 invalid pattern match range

m11 no parameters passed

m12 invalid line reference (negative offset)

m13 invalid line reference (line not found)

m14 line level not 1

m15 undefined index variable

m16 argumented quit not allowed

m17 argumented quit required

m18 fixed length read not greater than zero

m19 cannot copy a tree or subtree into itself

m20 line must have a formal parameter list

m21 algorithm specification invalid

m22 set or kill to ^$global when data in global

m23 set or kill to ^$job for non-existent job number

m24 change to collation algorithm while subscripted local

variables defined

21

Code Meaning

m26 non-existent environment

m27 attempt to rollback a transaction that is not restartable

m28 mathematical function, parameter out of range

m29 set or kill on structured system variable not allowed

by implementation

m30 reference to global variable with different collating

sequence within a collating algorithm

m31 control mnemonic used for device without a

mnemonic space selected

m32 control mnemonic used in user-defined mnemonic

space which has no associated line

m33 set or kill to ^$routine when routine exists

m35 device does not support mnemonic space

m36 incompatible mnemonic spaces

m37 read from device identified by the empty string

m38 invalid structured system variable subscript

m39 invalid $name argument

m40 call-by-reference in job actual parameter

m41 invalid lock argument within a transaction

m42 invalid quit within a transaction

m43 invalid range value ($x, $y)

m44 invalid command outside of a transaction

m45 invalid goto reference

m57 more than one defining occurrence of label in routine

m58 too few formal parameters

2 2

7 ! E X P R E S S I O N S

The simplest expression in mumps is a variable, a string literal,

a numeric constant, or a function (functions are discussed in

sections 7.4, 7.5, and 7.7). Examples of each of these four

types of expression are respectively:

LASTNAME

"Distaso"

7

$L(LASTNAME)

Such simple expressions are called atomic expressions.

More complicated expressions can be built up by linking a

number of atomic expressions by means of the arithmetic and

other types of operators. For example:

SUM/TOTAL

SEX="Female"

"adult"_"hood"

Mumps expressions are not evaluated in the order used by

most programming languages. Most languages follow

arithmetic operator precedence rules: first apply roots, logs,

and exponentiation, second multiplication and division, and

third addition and subtraction. Although nearly a universal

standard, these rules do not declare the precedence of

expressions that include relational or string manipulation

operators as well as arithmetic.

To extend these rules of precedence to account for all the

combinations that can arise in mumps expressions would yield

too complex a system to remember. Accordingly, mumps has

its own system of expression evaluation:

Rule 1) All mumps expressions are processed from left to

right. Whereas 3+4*2 in most languages would equal 11, in

mumps it equals 14.

Rule 2) Mumps precedence is overridden through the use

2 3

of parentheses, which nest expressions. Thus 3+(4*2) equals 11

in mumps.

These precedence rules apply to all expression elements

in mumps, not just operators. 3+(4*$e(268))*$t is either 11 or 0,

depending on the value of $test; intrinsics, extrinsics, and

externals have exactly the same precedence as any operator.

7.1 ! VA L U E S

Strings are interpreted as other data types by rules that permit

a unique representation of those data types as strings, and

rules that dictate how to interpret those strings as the data

types they represent.

7. 1 . 1 ! Representation

Mumps represents constant values as one of two kinds of

literals, either string or numeric.

String literals can represent any data type. A string literal is

bounded by quotes (e.g., "Mozart") and contains any string

of printable characters. Embedded quotes are represented as

two consecutive quotes (e.g., "Beethoven's ""Eroica""

Symphony"). Each quote pair represents a single quote in the

value denoted by the string literal. An empty string is

represented as exactly two quotes (i.e., "").

[For portability, character strings should not be longer than 255

characters, and should only include characters from a standard

character set.]

Numeric literals are a special case of string literals, a

shorthand for representing numeric, integer, or truth values. A

numeric literal has a mantissa optionally followed by the letter

e and a positive or negative integer exponent; the mantissa

can be either an integer or a real number (e.g., 3.14159, -42,

6.0225e23, .6e+2, or 5e-1, but not 0.34, or 2.00).

[For portability, numbers should fall within the exclusive

2 4

interval [-1025 , -10-25] or [10-25 , 1025] or be zero, and should rely

on no more than fifteen significant digits.]

7. 1 .2 ! Interpretation

Because data has only one base type, the string, mumps

programmers never need to convert their data between

types. Instead, data is interpreted appropriately as required by

context. If a string does not equal the standard representation

of the type it is being interpreted as, it is automatically

coerced into the correct representation. Mumps programmers

use this type coercion to transform their values as needed.

Numeric interpretation involves taking the leftmost portion

of the string that is either exponential (42e0), decimal (-2.718),

or integer (1865) in form. It produces canonic numbers (e.g.,

the numeric interpretation of "0.34" is .34). If the string does

not begin with a valid numeric representation, the numeric

interpretation is zero.

Integer interpretation is formed from the numeric

interpretation by dropping any fraction.

Truth-value interpretation is false if the numeric

interpretation is 0; otherwise it is true.

Here are some interpretations of different strings:

String Numeric Integer Truth Value

"810" 810 810 1

"98 POUNDS" 98 98 1

"" 0 0 0

" 35" 0 0 0

"86+9" 86 86 1

"PAGE 10" 0 0 0

"-8.4" -8.4 -8 1

"86E-1" 8.6 8 1

"---9" -9 -9 1

"-0" 0 0 0

2 5

7. 2 ! VA R I A B L E S

There are three kinds of variables: local, global, and special.

7.2 .1 ! Local Var iables

Locals are stored in each process’s symbol table, which lists

the names, subscripts, and values of all locals currently

defined for that process. Attempting to evaluate an undefined

variable causes error m6. Their names have the same syntax

[and portability restrictions] as routine names. Access to locals

is restricted within a process through the use of parameter

passing or the new command; locals not explicitly scoped by

one of these methods are available to all routines executing

within the process for the life of the local.

[For portability, variable names, like labels, should be

distinguished by their first eight characters and should not contain

lower case letters.]

[For portability, the total space used by the local variables for a

process must not exceed 10,000 characters. The total length of a

local variable reference with all its subscripts must not exceed the

string length limit. The values of subscripts are restricted only by

the possible values of strings.]

7.2.2 ! Global Var iables

Global names have the same syntax [and portability

restrictions] as locals; global names are always preceded by a

leading caret (^) symbol, as in ^mta. Attempting to evaluate

an undefined global variable causes error m7. Access to

globals is restricted by environment.

A naked global reference is a shorthand syntax for

specifying a global variable by omitting the variable name and

possibly some of the subscripts. The first subscript in the

subscript list of a naked global reference implicitly refers to

the last subscript level of the most recent global reference.

2 6

Thus, if a reference has been made to ^x(1), a subsequent

naked reference to ^(2,3) would access the value of ^x(2,3).

Note that most recent global reference includes any

reference to any global, with only highly specialized

exceptions (see the $name function and the lock command).

Properly determining the most recent global reference

depends upon a sophisticated understanding of how mumps

commands are executed, so naked references should be used

with caution.

Under certain special conditions, the naked indicator is

not defined, and a reference to it will cause error m1. These

conditions arise after:

1. a process begins, but before the first full global

reference executes;

2. an unsubscripted full global reference executes;

3. a transaction rolls back;

4. the default global environment changes; or

5. $query operates upon a global.

7.2.3 ! Special Var iables

Mumps provides four kinds of special variables designed to

give additional information to the process: intrinsic special

variables and structured system variables (both of which give

each process identification and status information), extrinsic

variables (which let mumps programmers add new special

variables to reflect the needs of their software), and external

variables (which provide status information related to external

packages). Attempting to evaluate an undefined special

variable causes error m8. With few exceptions, special

variables cannot be modified.

7. 3 ! S T R U C T U R E D S Y S T E M VA R I A B L E S

Identifiable by the ^$ characters that begin their names,

2 7

structured system variables are arrays that describe the

current status of the system. The name of any structured

system variable may be abbreviated as specified in the

standard (e.g., ^$c).

Each describes the characteristics of some system entity

or resource. The first subscript always identifies the entity or

resource described by the nodes underneath it. Therefore, in

the list of nodes defined within each variable, only the second

and subsequent subscripts are shown.

The ^$job nodes that permit assignment of the default

environment for globals, locks, and routines, are settable.

Setting them to a non-existent environment causes no error,

but the attempts to refer to globals, locks, or routines in that

environment will cause error m26.

7.3. 1 ! List of Structured System Var iables

^$CHARACTER (character-set-profile name)

Defines the available character sets. [Only M, ASCII, and JIS90

are portable.]

^$C("M","INPUT","JIS90") => xform to M from JIS90

^$C("M","OUTPUT","JIS90") => xform from M to JIS90

^$C("M","IDENT") => character validation

^$C("M","PATCODE","U") => U pattern code definition

^$C("M","COLLATE") => collation algorithm

^$DEVICE (device ID)

Defines the available i/o devices. [Device IDs are not portable.]

$O(^$D("")) => first device ID

^$D("SCK$5030","CHARACTER") => device’s character set

^$D("SCK$5030",attribute) => attribute’s current value

2 8

^$GLOBAL (global variable name)

Defines the global directory.

^$G("^DD","CHARACTER") => global’s character set

^$G("^DD","COLLATE") => its collation algorithm

^$JOB (process ID)

Defines the current processes.

$O(^$J("")) => first process ID

^$J(42,"CHARACTER") => process’s character set

^$J(42,"GLOBAL") => process’s global environment

^$J(42,"LOCK") => process’s lock environment

^$J(42,"ROUTINE") => process’s routine environment

^$LOCK (name reference)

Defines the currently held locks.

$O(^$L("")) => first locked name reference

$D(^$L("^DD(1)")) => true if ^DD(1) is currently locked

^$ROUTINE (routine name)

Defines the routine directory.

$D(^$R("DIC")) => true if DIC routine exists

^$R("DIC","CHARACTER") => routine’s character set

^$SYSTEM (system ID)

Defines the current mumps system.

^$S("LIVE","CHARACTER") => system’s default char set

^$Z . . . (vendor-specific value)

Defines vendor-specific system entities. [Structured system

variables whose names begin with ^$Z are not portable.]

^$ZSPECIFIC("nonstandard") => nonportable

2 9

For more information on structured system variables, see

chapter 7.1.3 of MUMPS 1995.

7. 4 ! E X T R I N S I C VA R I A B L E S & F U N C T I O N S

Identifiable by the $$ characters that begin its name, an

extrinsic variable is a special variable added to the language

by a mumps programmer. Its name must be a label reference

to the code that returns the value of the extrinsic variable

(with an argumented quit command); for example,

$$now^time might always equal the current time in human-

readable format.

Similarly, an extrinsic function is a function added to the

language by a mumps programmer, and its name must have

the same format as that of an extrinsic variable. It takes a list

of arguments and returns a value based on those arguments.

The arguments are passed as parameters (see 8.1.4, Parameter

Passing, below) to the code that computes its value, and the

computed value is returned with an argumented quit

command; for example, $$weekday^time("February 14, 1996")

would return “Wednesday”, and $$weekday^time("February

16, 1996") would return “Friday”.

7. 5 ! E X T E R N A L VA R I A B L E S & F U N C T I O N S

Identifiable by the $& characters that begin its name, an

external variable is a special variable added to the language

by an external package. The rest of the name must be a valid

external reference, such as $&math.pi.

Similarly, an external function is a function added by an

external package. An external function name has the same

syntax as an external variable name, and must be followed by

the list of arguments, such as $&math.sin(value).

[External variables and functions are not portable.]

3 0

7. 6 ! I N T R I N S I C S P E C I A L VA R I A B L E S

Identifiable by the $ character that begins its name, an

intrinsic special variable has a unique name that may be

abbreviated to its initial letter or letters (e.g., $ecode or $ec but

not $e). Intrinsic variables modifiable by the new or set

commands are so indicated below.

7.6. 1 ! List of Intr insic Special Var iables

$DEVICE

$d = Status of current device. Settable. One to three pieces

separated by commas; if it evaluates to true (1), the device is in

an error condition.

$ECODE

$ec = List of current error codes surrounded by commas.

Settable. Mdc errors begin with m, implementor errors with z,

user errors with u. For example, "" means no errors, but

",m6," means a reference to an undefined local variable

occurred, and error processing is now in effect.

$ESTACK

$es = Counts process stack levels. Newable. Newing it also

sets it to 0.

$ETRAP

$et = Mumps code that will execute if an error occurs (e.g., s

$et="d debug^error"). Settable & Newable. Newing $etrap

stacks its current value but leaves it set to that value.

$HOROLOG

$h = Current date and time as "days,seconds". The first

number counts the days elapsed since December 31, 1840 at

31

midnight, and the second number counts the seconds since

the last midnight (e.g., "56665,31576" was February 22, 1996 at

8:46:16 a.m.).

$IO

$i = Current i/o device.

$JOB

$j = Current process id. A unique positive integer.

$KEY

$k = The control-sequence that terminated the current

device’s last Read command. Settable.

$PRINCIPAL

$p = Principal i/o device.

$QUIT

$q = True (equals 1) if the current context was invoked as an

extrinsic variable or function; false (0) otherwise. When $quit

is true, the quit from the current block of code must have an

argument.

$STACK

$st = Current level of the process stack.

$STORAGE

$s = Characters of free space available for use.

$SYSTEM

$sy = Current system id.

3 2

$TEST

$t = Result of previous timeout or argumented if. Boolean. 1

means previous if or timed action succeeded.

$TLEVEL

$tl = Current number of nested transactions.

$TRESTART

$tr = Number of times the current transaction has been

restarted.

$X

$x = Approximate horizontal cursor or carriage position of

current device. Settable.

$Y

$y = Approximate vertical cursor or carriage position of

current device. Settable.

$Z. . .

All implementation-specific intrinsic special variable names

begin with $z. Settable and Newable only if allowed by

implementor. [Special variables whose names begin with $Z are

not portable.]

For more information on intrinsic special variables, see

chapter 7.1.4.10 of MUMPS 1995.

7. 7 ! I N T R I N S I C F U N C T I O N S

Identifiable by the $ character that begins its name, an

intrinsic function has a unique name that may be abbreviated

to its initial letter or letters (e.g., $ascii or $a but not $as). All

intrinsic functions take a list surrounded by parentheses of

3 3

one or more arguments separated by commas. All the

arguments are evaluated before the function is executed,

even if (as in the case of $get when applied to defined

variables) some arguments are not needed for the function to

correctly execute.

7.7. 1 ! List of Intr insic Functions

$ASCII

Ascii number corresponding to one character in a string. The

first argument is the string to examine. The optional second

argument is the position within the string of the character

whose ascii code should be returned, and defaults to 1.

$A("Beethoven") => 66

$A("HAYDN",3) => 89

$CHAR

Characters corresponding to a list of ascii values. Each

argument gives the code for one character (a negative integer

yields an empty string).

$C(66,-1,65,67,72) => "BACH"

$DATA

Number indicating whether a variable is defined or has nodes.

The argument is the variable to evaluate.

>K BORN ; $D(BORN) => 0

>S BORN=1797 ; $D(BORN) => 1

>S BORN(1)=1840 ; $D(BORN) => 11

>K BORN S BORN(0)=1 ; $D(BORN) => 10

$EXTRACT

One or more characters from a string. Can be used as

destination of set command. The first argument specifies the

3 4

source string. The optional second argument specifies the

position of the first character to return, and defaults to 1. The

optional third argument specifies the position of the last

character of the substring to return, and defaults to the value

of the second argument.

$E("Brahms") => "B"

$E("Handel",5) => "e"

$E("Mozart",4,6) => "art"

$FIND

Position of character following leftmost occurrence of

substring in a string. The first argument is the string to search.

The second argument is the substring to find. The optional

third argument is the character position within the string from

which to begin the search, and defaults to 1.

$F("SIBELIUS","I") => 3

$F("SIBELIUS","I",3) => 7

$F("SIBELIUS","I",7) => 0

$FNUMBER

Number formatted according to codes. The first argument is

the number to format. The second argument is a string of

codes that describe the formatting to perform (see

examples). Note that the only code that can be combined

with "P" (or "p") is ","; including it with any of the others

causes error m2.

$FN(-42,"P") => "(42)"

$FN(42,"P") => " 42 "

$FN(-42,"T") => "42-"

$FN(42000,",") => "42,000"

$FN(42,"+") => "+42"

$FN(-42,"-") => 42

$FN(42000,"p,",2) => " 42,000.00 "

3 5

$GET

Value of a variable, or a default value if variable is not defined.

The first argument is the variable whose value should be

returned. The optional second argument is the value to return

if the variable is undefined, and defaults to "".

>K BORN ; $G(BORN) => ""

$G(BORN,"unknown") => "unknown"

>S BORN=1841 ; $G(BORN) => 1841

$G(BORN,"??") => 1841

$G(BORN,$$ABC) => 1841

$JUSTIFY

Right justified string in a field of spaces. The first argument is

the string to justify. The second argument is the number of

character positions to use to right justify the string; if the

length of the string itself exceeds this number, $justify has no

effect. The optional third argument is the maximum number

of fractional digits to return, and defaults to the number of

digits in the first argument.

$J("3.14159",9) => " 3.14159"

$J("3.14159",9,2) => " 3.14"

$LENGTH

Length of a string, measured in characters or pieces. The first

argument is the string to evaluate. The optional second

argument is the delimiter to use to partition the string for

counting; if absent, the length is counted in characters.

$L("Verdi & Wagner") => 14

$L("Verdi & Wagner","&") => 2

$L("Verdi & Wagner"," ") => 3

$NAME

Evaluated name of a variable with some, all, or no subscripts;

3 6

such a string is called a name value. The first argument is the

name to evaluate. The optional second argument is the

maximum number of subscripts to return, and defaults to the

number of subscripts in the first argument. A negative second

argument causes error m39.

>S YEAR=1860

$NA(BORN(YEAR,7)) => "BORN(1860,7)"

$NA(BORN(YEAR,7),1) => "BORN(1860)"

$NA(BORN(YEAR,7),0) => "BORN"

$ORDER

Next or previous subscript in a specified array. The first

argument is the name of the array, with its last subscript being

the one to traverse. The optional second argument

determines whether the previous (-1) or next (1) subscript

value should return, and defaults to 1.

>K BORN S (BORN(1810),BORN(1809))=""

$O(BORN("")) => 1809

$O(BORN(1809)) => 1810

$O(BORN(1810)) => ""

$O(BORN(1810),-1) => 1809

$O(BORN(1809),1) => 1810

$PIECE

Partitions a string into pieces based on a delimiter, and returns

some of those pieces. Can be used as destination of set

command. The first argument is the string to partition. The

second argument is the delimiter to use to partition it. The

optional third argument is the first piece of the string to

return, and defaults to 1. The optional fourth argument is the

last piece of the string to return, and evaluates to the third

argument.

>S B3="Beethoven,Bach,Brahms"

3 7

$P(B3,",") => "Beethoven"

$P(B3,",",3) => "Brahms"

$P(B3,",",1,2) => "Beethoven,Bach"

>S $P(B3,",",2)="BRUCKNER"

B3 => "Beethoven,BRUCKNER,Brahms"

$QLENGTH

Number of subscripts in a variable name, passed as a name

value (see $name). The argument is the name value to

evaluate.

$QL("BORN(1675,5)") => 2

$QSUBSCRIPT

Specified part (name, environment, or a subscript) of a

variable name, passed as a name value. The first argument is

the source name value. The second argument is the part of

the name value to return: -1 returns its environment (if one is

present), 0 returns its unsubscripted name, and positive

integers return the corresponding subscripts (e.g., 2 returns

the second subscript).

>S NAME="^|""MUSIC""|DOB(1862,1)"

$QS(NAME,-1) => "MUSIC"

$QS(NAME,0) => "^DOB"

$QS(NAME,1) => 1862

$QS(NAME,2) => 1

$QUERY

Next subscripted variable name in array, returned as a name

value. The argument is the name value of the starting

subscripted variable.

>K BORN S BORN(1891)=""

>S BORN(1882,3)=""

$Q(BORN) => "BORN(1882,3)"

3 8

$Q(@"BORN(1882,3)") => "BORN(1891)"

$Q(BORN(1891)) => ""

$RANDOM

Random integer uniformly distributed over an interval

between 0 and maximum-1, inclusive. The argument is a

number one greater than the maximum value to return. An

argument value less than 1 causes error m3.

$R(9) => a number between 0 and 8

$REVERSE

Characters of a string in reverse order. The argument is the

string to reverse.

$RE("Brahms") => "smharB"

$RE("level") => "level"

$SELECT

Value corresponding to first true condition of list, evaluated

left to right. Each argument is a conditional expression,

followed by a colon, and then the expression whose value

$select should return if the corresponding condition

evaluates to true. Arguments after the first with a true

condition are not evaluated. If all conditions are false, error

m4 occurs.

>S SYMPHONY=5

$S('$D(SYMPHONY):"?",1:"!") => "!"

>K SYMPHONY

$S('$D(SYMPHONY):"?",1:"!") => "?"

$STACK

Information about how a level of the process stack was

created, what code is executing at that level, and what errors

have accumulated there. The first argument is the level of the

3 9

stack to analyze, and returns a value that indicates how the

execution frame at that level was pushed onto the stack: if

due to a command, the full upper-case name of the

command; if due to an extrinsic, the value "$$"; and if due to

an error, its error code.

If the first argument equals -1, $stack returns the depth of

the stack. If 0, an implementation-specific value that indicates

how this process was started.

The optional second argument returns other information

about a stack level. The value "ecode" returns a list of an error

codes added at that stack level. "Mcode" returns the current

line of mumps code (or value, in the case of an xecute

command) at that stack level. "Place" returns the location of

the current command at that stack level.

This example shows the values returned by $stack for a

hypothetical error situation:

$ST(-1) => 3

$ST(0) => "JOB"

$ST(1) => "DO"

$ST(2) => "$$"

$ST(3) => ",M6,"

$ST(2,"ECODE") => ",M6,"

$ST(2,"MCODE") => " K OOPS W !,OOPS"

$ST(2,"PLACE") => "FUMBLE+9^FOO +2"

$TEXT

A line of code from a routine. The argument is a reference to

the line to return. Use of an absolute line count, as in the third

example, but with a count less than zero causes error m5.

>S LINE="FUMBLE+9^FOO"

$T(@LINE) => "K OOPS W !,OOPS"

$T(+0^FOO) => "FOO"

$T(^FOO) ; first line of FOO

4 0

$TRANSLATE

A translation of a string, in which certain characters are

removed or replaced. The first argument is the string to

translate. The second argument is a string of the characters to

remove (or replace if a third argument is present). The

optional third argument is a string of the characters with

which to replace the characters of the second argument in the

first argument. If the second argument is longer than the third,

the excess characters at the end of the second argument are

removed, not replaced.

>S MAN="SHOSTAKOVICH"

$TR(MAN,"H") => "SOSTAKOVIC"

$TR(MAN,"HS") => "OTAKOVIC"

$TR(MAN,"O","U") => "SHUSTAKUVICH"

$TR(MAN,"OS","CU") => "CHUCTAKUVICH"

$TR(MAN,"SHO","E") => "EETAKVIC"

$TR(MAN,"AKVSHOT","MUS") => "MUSIC"

>S UP="ABCDEFGHIJKLMNOPQRSTUVQXYZ"

>S LO="abcdefghijklmnopqrstuvwxyz"

$TR(MAN,HI,LO) => "shostakovich"

$VIEW

Implementation-specific information. $View is a standard

function, but its arguments and returned values are not

defined by the standard.

$Z. . .

All implementation-specific intrinsic function names begin

with $z. [Special variables whose names begin with $Z are not

portable.]

For more information on intrinsic functions, see chapter 7.1.5

of MUMPS 1995.

41

7. 8 ! O P E R A T O R S

Mumps operators provide arithmetic, string manipulation, and

indirection. They are recognizable (though not uniquely, since

syntactical delimiters in the language are similar) as one or

more punctuation characters. Remember that mumps operator

precedence follows expression-evaluation rules (see the start

of section 7).

7.8. 1 ! List of Oper ators

Arithmetic Unary Operators

+

Numeric coercion.

+"27.3 days" => 27.3

-

Negate numeric coercion.

-"3.14 radians/second" => -3.14

Arithmetic Binary Operators

+

Sum

2.718+"2 above e" => 4.718

-

Difference

2.12-"6.3 eV" => -4.18

*

Product

1.00794*"2 atoms/H2" => 2.01588

4 2

/

Division. Division by zero (using any of the three division

operators) causes error m9.

144.132/12.011 => 12

\

Integer division

82.8\"29.5 years/orbit" => 2

#

Modulo division. a#b = a - (b*floor(a/b)), where floor(x) = the

largest integer not greater than x.

42#5 => 2

-42#5 => 3

42#-5 => -3

-42#-5 => -2

**

Exponentiated value. Results producing complex numbers are

not defined (e.g., -1**.5). [For portability, exponentiation has

only seven significant digits of accuracy.]

4**2 => 16

4**.5 => 2

4**-1 => .25

4**-2 => .0625

4**-.5 => .5

Arithmetic Relational Operators

<

Less than

1642<1879 => 1

4 3

>

Greater than

1452>1564 => 0

String Binary Operators

_

Concatenates

"Feynman: "_1918 => "Feynman: 1918"

String Relational Operators

=

Equals

1969-5=1964 => 1

1967="1967: M" => 0

1966=01966 => 1

1966="01966" => 0

"Lovelace"="Hopper"+2 => 2

"Lovelace"=" Lovelace "+2 => 2

[

Contains (note: by definition all strings contain the empty

string "")

"Darwin"["win" => 1

]

Follows

"COPERNICUS"]"KEPLER" => 0

]]

Sorts after (its behavior depends on the current character set’s

4 4

collation algorithm; e.g., in m numbers collate numerically,

whereas in ascii they collate as strings).

1683]]170 => 1 in M collation

1683]]170 => 0 in ASCII collation

"PRIESTLEY"]]"LAVOISIER" => 1

?

Pattern matches (see pattern match section below for details)

"Leakey"?1A => 0

"Boaz"?1.A => 1

"Fossey"?1U1.5L => 1

"Goodall"?.4L.P6C.E => 0

"Piaget"?1"Pi"4.U => 0

"Skinner"?2A1(1"in",78C).2U => 0

"Harlow"?.(1"Har",.6"Mas")1.AP => 1

"Maslow"?.E1"low".CNP => 1

Logical Operators

&

And

"Watson"&"Crick" => 0

"Morgan"&1735 => 0

1838&1839 => 1

-12000&1996 => 1

1859&0 => 0

!

Or

"Jenner"!"Pasteur" => 0

"Hoffman"!1928 => 1

1898!-400 => 1

1867!0 => 1

4 5

'

Not

'"Turing" => 1

''"Babbage" => 0

'"Backus"&1957 => 1

'("Wirth"&"Codd") => 1

"Wirth"'&"Codd" => 1

'("ALGOL"!1959) => 0

"ALGOL"'!1959 => 0

"Chen"'="Jacquard" => 1

"Ada Lovelace"'["Love" => 0

"ENIAC"'<"Naur" => 1

Special Operators

@

Indirect (see indirection section below for details)

>S BORN(-300)="EUCLID"

>S NAME="BORN"

@(NAME_"(-300)") => "EUCLID"

@NAME@(-300) => "EUCLID"

>S TAG="FUMBLE",ROUTINE="FOO"

>D @TAG^@ROUTINE

>S ARG="BORN(1856)=""FREUD"""

>S @ARG

>S PATTERN="1U4L"

"Curie"?@PATTERN => 1

For more information on operators, see chapters 7.1.4.11 and

7.2.1 of MUMPS 1995.

4 6

7.8.2 ! Pattern Matching

Perhaps the second most powerful operator in mumps (for the

most powerful, see 7.8.3, Indirection, below), pattern match

tests whether a string matches a certain pattern. Pattern

matches in MUMPS 1995 have most of the capabilities of

regular expressions, a widely-used standard for characterizing

strings, but also are capable of operating on strings from any

character set.

Each pattern consists of a series of pattern atoms, each of

which must match part of the string (matching an empty

string within a string is valid). Each pattern atom has two

parts: a repetition count that declares how many substrings

are required, and a pattern element that describes the

substrings.

For example, the pattern 1u4l has two pattern atoms: 1u

and 4l. The 1u requires one upper case letter, and the 4l four

lower case, which is why "Curie"?1U4L evaluate to 1.

The repetition counts can be counts or ranges. Ranges use

the "." character to specify the range, and can be open at

either, both, or neither end. For example, 1u, 1.2u, .2u, and 1.u

all have valid repetition counts. An upper bound less than the

lower causes error m10.

Pattern elements can be pattern codes. For the m and ascii

character sets, the available codes are a, c, e, l, n, p, and u,

matching to alphabetic, control, every character, lower case,

numeric, punctuation, and upper case, respectively. Pattern

codes can include any number of these characters in any

order, such as 1.ap and .cnp.

Pattern elements can also be literal substrings, as in

"Maslow"?.E1"low".CNP.

Finally, pattern elements can be alternations that contain

choices of how to satisfy the pattern atom, for example, the

pattern match "Harlow"?.(1"Har",.6"Mas")1.AP has an

4 7

alternation in its first pattern atom. Whenever an alternation is

repeated, as is allowed here by the "." repetition count, each

choice is independent of the previous ones; "", "Har",

"HarHar", and "MasHar" would all satisfy the first pattern

atom. In the 1995 standard, the choices within an alternation

are restricted to pattern atoms, and may not include full

patterns (although the next mumps standard will permit full

patterns within alternation).

For flexibility, patterns may be defined at run time through

indirection, as explained more fully below.

7.8.3 ! Indirection

Indirection, the most powerful operator in mumps, is more an

underlying capability that spans multiple syntaxes than it is a

true operator. This is the ability to leave fragments of code

unresolved; an expression stands in for the code fragments,

and is evaluated and then resolved into code and executed at

run time. The advantage of indirection is generalization, the

capacity to handle classes of problems rather than just

specific ones. In three out of five cases, the operator or

delimiter @ identifies the indirection.

In value indirection, common to all programming

languages, variable names are manipulated rather than

values, so that the software can manipulate any data that

satisfies its constraints. The presence of a variable name

within an expression identifies the value indirection, so no @

is needed (e.g., name and ^science("gould")).

In name indirection the names themselves can vary. Since

names are used throughout mumps for many different

purposes, there are many different kinds of name indirection.

All are identified by the presence of the @ character, and all

are recursive in multiple ways.

4 8

In variable indirection, the name of a local or global

variable can be specified indirectly:

>S A="Curie",B="A",C=@B S D="@B",E=@D

>S F="B",G=@@F S ^A="Bohr",H=@("^"_B)

>S ^B=@$E(A)

In these examples, a, c, e, g, and ^b are all set to "Curie",

and ^a and h to "Bohr". In all cases, the expression following

the @ is evaluated, and the resulting value treated as a new

variable name; in the case of e, the resulting name itself

involves indirection, and so begins the resolution of

indirection anew.

Subscript indirection reduces the need to use

concatenation when writing code that traverses the subscripts

of an array specified by indirection:

>S DIAM("EARTH")="12750 km",ROOT="DIAM"

@(ROOT_"(""EARTH"")") => "12750 km"

@ROOT@("EARTH") => "12750 km"

>S ROOT2=$NA(@ROOT@("EARTH"))

>S @ROOT2@("MILES")="7920 mi"

The first use of indirection in this example is variable

indirection, while the others are subscript indirection.

Subscript indirection can add subscripts to any level of array

reference; in the second and third examples we add an

"earth" subscript to the name diam, whereas in the fourth

we add "miles" to diam("earth").

Variable-name indirection is a specialized form of variable

indirection that permits only unsubscripted locals, and does

not evaluate the final name to get a data value. It is used by

the kill, new, and tstart commands, and when passing

parameters by reference, e.g., d remove^file(.@nobel) and n

(@sys).

Lock-name indirection is a similar but distinct

specialization of variable indirection used only for the lock

4 9

command. It permits subscripted or unsubscripted locals or

globals, and the global references may or may not include an

environment (e.g., S ADD="^SCIENCE(""Hawking"")" L

+@ADD).

Label indirection and routine indirection let a command

refer to a label or routine at run time dynamically, so the

command can refer to multiple labels or routines.

Pattern indirection lets the pattern used in a pattern match

operation vary dynamically at run time, and also uses the @

delimiter to identify the indirection. For example:

>S DATA(1)="Democritus",PATTERN(1)="1.A"

>S DATA(2)="430 A.C."

>S PATTERN(2)="1.8N1"" "".1(1"A.D.",1"B.C.")

>S VALUE=1 ; DATA(VALUE)?@PATTERN(VALUE) => 1

>S VALUE=2 ; DATA(VALUE)?@PATTERN(VALUE) => 0

Argument indirection lets the argument of a specific

command or function vary dynamically at run time, and also

uses the @ character. Every command that accepts

arguments, except the for command, will accept a list of one

or more of its arguments indirectly. For example:

>S IND="COMPUTER=""Mark 1""" S @IND

>S IND="DATE=1944,C=DATE_"":""_COMPUTER" S @IND

Most functions don’t need argument indirection because

their arguments are of some type that already indirects, such

as a variable name. Functions that take multiple arguments,

unlike commands, cannot indirectly refer to more than one

argument at once; arguments must be indirected individually.

Even $text, whose argument is not of a type that normally

accepts complete indirection, can be referred to indirectly.

Only $select violates this pattern; it does not let a

complete argument, a condition:value pair, be indirected.

Instead, the condition and value must be indirected

5 0

independently, and the colon delimiter cannot be indirected

at all.

Command indirection lets the resolution of entire

commands be deferred until run-time. It is identified not by

an @ character, but by its invocation with the xecute

command. See the description of xecute in chapter 8,

Commands, for details.

>S ACTION="S BORN(1966)=1" X ACTION

51

8 ! C O M M A N D S

Mumps commands turn the potential of its data structures

and the evaluation of its expressions into directed activity.

8 .1 ! G E N E R A L R U L E S

8.1 . 1 ! Basic Syntax

Each command name has an abbreviation that may be used

instead of the full name. Some commands take arguments;

others don’t. Those that do are separated from their argument

by a single space, and can usually accept multiple arguments,

separated by commas; execution of multiple arguments acts

like separate instances of the command with a single

argument each. Command names are case-insensitive (e.g.,

HALT, halt, and hALt are the same command).

8.1 .2 ! Post-condit ionals (Command/Argument)

Many commands (see definitions in section 5.5) accept post-

conditionals (expressions appended to the command name

by a colon). Unless a post-conditional evaluates to true, the

command does not execute or evaluate its arguments

(therefore, the naked reference is unaffected by the

command’s argument, for example). Post-conditionals do not

change $test.

Some branching commands accept post-conditionals on

their arguments. Unless these conditions evaluate to true, the

command skips those arguments.

8.1 .3 ! Timeouts

Four commands accept timeouts, which look like argument

post-conditionals but evaluate instead to the maximum

number of seconds to wait for the command to succeed.

5 2

Timeouts always set $test to indicate whether the timed

command succeeded within the allotted time. [For portability,

the effects of timeouts lasting for non-integer durations, e.g. 2.5,

should not be relied upon.]

8.1 .4 ! Par ameter Passing

Extrinsic function references and the do and job commands

can pass values or variables to the blocks of code they invoke.

The list of values to pass must follow the name of the function

or the argument of the do or job command, and must be

enclosed in parentheses (e.g., $$add^math(length,pause) or

j print^science("einstein")). Each value in this list can be an

arbitrary expression. The list itself is called the actual

parameter list.

At the receiving end, the referenced label within the

routine must contain a list of formal parameters at least as

long as the actual list. Trying to pass more actual parameters

than there are formal parameters causes error m58. These

formal parameters must be unsubscripted local variable

names.

During invocation, when the execution frame of the new

code block is pushed on the process stack, the actual

parameters are bound to the formal parameters either by

value or by reference (note that the job command can only

pass parameters by value).

When parameters are passed by value, the corresponding

named formal parameters are first newed (see new command)

and then set equal to the values passed in the actual list. If the

actual parameter is also a variable, it is independent of the

formal parameter; changes to the formal variable do not

affect the actual parameter. When the block completes and its

execution frame pops off the stack, the formal parameters are

5 3

also popped, and any pre-existing local variables of the same

names are restored to their previous states.

When parameters are passed by reference, the

corresponding named formal parameters are added as new

names for the same variables. That is, the name-table entries

for the formal parameters point to the same data-table entries

that the actual names do. After the block completes and its

frame pops off the stack, the formal names for the variables

are unbound from the actual variables and returned to their

former bindings (if any), but changes to the values of the

formal parameters within the completed block are reflected in

the values of the actual parameters.

Whether parameters are passed by value or reference is

decided by the caller, not the called block of code. The names

of variables passed by reference are preceded in the actual list

by a period (e.g., d update^schedule(.patient)); a period is not

placed before the name of the corresponding formal

parameter name within the routine that defines it.

Parameters can be passed to external routines as well, by

value or reference.

8 . 2 ! L I S T O F C O M M A N D S

BREAK

break:postcondition

Stops execution of current process for debugging until

signaled. [Behavior and arguments not specified by the standard.]

>B

CLOSE

close:postcondition Device:parameters, . . .

parameters =>

device parameter

5 4

 (device parameter:device parameter: . . .)

device parameter =>

vendor-specific expression

device keyword

device attribute=expression

Releases ownership of an i/o device. Close can also use

device parameters to manipulate the device as it is released.

If the current device is closed, the special variable $io will be

empty or reset to a default value.

[Implementation-specific CLOSE parameters are not portable.]

>C "AUDOUT","VIDOUT"

>C:OFFLINE "SCREEN1":("READY":6)

DO

do:postcondition

do:postcondition DoArgument:postcondition, . . .

Do Argument =

entry reference

label reference(actual parameters)

external reference(actual parameters)

Executes a subroutine, then returns control to the next

command after the do; for multiple arguments, each

subroutine in turn is executed. The line referenced in each

argument must have a line level of one, or the do will cause

error m14. Argumentless do executes the following block of

code, with a line level one greater than the do’s line level,

then returns.

>D

>D:AUTHOR="SHAKESPEARE"

>D HAMLET,MACBETH,OTHELLO,KINGLEAR

>D ^PLAY:CHARACTR="FALSTAFF",LIST^PLAY

>S WORK="TEMPEST" D @WORK^PLAY

>S WORK="MUCHADO^PLAY" D @WORK

5 5

>D ADD^PLAY("LOVE'S LABOUR'S LOST")

ELSE

else

Lets rest of the line execute only if $test evaluates to false.

>E

FOR

for

for LocalVariable=ForParameters

For Parameters =>

For Parameter,For Parameter, . . .

For Parameter =>

expression

numeric expression:numeric expr.:numeric expr.

Repeats execution of the rest of the line, and sets the value of

a variable each time. Argumentless for repeats execution of

the rest of the line without setting a variable. A quit or goto

command terminates a for loop on the current line; quit

terminates only the most recent in a series of nested for

loops on the line, whereas goto terminates all active for

loops on the line. Argument indirection not allowed.

Each for parameter defines a series of one or more values

for the variable to accept, and executes the rest of the line

once for each value in that series. Each for parameter can be

either a single evaluated expression, or a range of numeric

values. Ranges include a starting value, an increment with

which to calculate subsequent values, and an optional

maximum value. A for loop that runs out of values stops

without needing a quit or goto.

>F

>F TALE=1:1:53 => executes 53 times

>F TALE=5:2:53 => executes 25 times

5 6

>F TALE=1:1 Q:TALE=53

>F TALE=1:1 G TELL:^NAME(TALE)="PARDONER"

>F TALE="WIFE OF BATH",12:1:13

>F TALE=2:2:8,11:2:21,24,27,28,31

>F AUTHOR="CHAUCER","BOCCACCIO"

>F TALE=1:1:53 F LINE=1:1 Q:'^TEXT(TALE,LINE)

GOTO

goto:postcondition EntryReference:postcondition, . . .

Transfers execution to a different line of code, without

returning when that block of code completes. Trying to goto

a line at a different line level, or trying to cross block

boundaries when the goto’s line level is greater than one,

causes error m45.

>G:AUTHOR="DANTE" ^CANON

>G INFERNO:BAD,PARADISO:'BAD

>G VIRGIL^GUIDE:'BOOK3,BEATRICE^GUIDE

>S CANTO=26,BOOK="INFERNO" G @CANTO^@BOOK

HALT

halt:postcondition

Ends the process. Releases all locked names, closes all

opened devices, and aborts all active transactions. Halt never

takes an argument.

>H

HANG

hang:postcondition NumericExpression, . . .

Suspends execution of the process for approximately the

specified number of seconds. Negative numbers or zero do

not stop execution. Hang always takes an argument. [For

portability, the effects of hanging for non-integer durations, e.g.

2.5, should not be relied upon.]

5 7

>H 3

>H TIME

IF

if

if TruthValueExpression, . . .

Lets the rest of the line execute only if all arguments evaluate

to true; sets $test to whether the if succeeded. Argumentless

if lets the rest of the line execute only if $test = 1. Note that

because if with multiple arguments is identical to multiple,

independent if commands, later arguments are evaluated

only if earlier ones succeed.

>I

>I AUTHOR="CERVANTES"

>I FRIEND1="QUIXOTE",FRIEND2="SANCHO"

>I NAME="ALDONZA"!(NAME="DULCINEA")

>I $D(VIRTUE),VIRTUE="FRIENDS" D VIRTUE^CANON

JOB

job:postcondition JobArgument:JobParams:timeout, . . .

Job Argument =>

entry reference

label reference(actual parameters)

Job Parameters =>

vendor-specific expression

(expression:expression: . . .)

Makes an independent process that begins execution at the

specified line of code. Timed job sets $test to whether the job

command succeeded in the time specified. Note that the job

command can only pass parameters by value; trying to pass

by reference causes error m40. [Implementation-specific JOB

parameters are not portable.]

>J ^LISTPLAY

5 8

>J PRINT^CANON:25 E Q

>J PRINT^ESSAY("MONTAIGNE","OF EXPERIENCE")

KILL

kill:postcondition

kill:postcondition KillArgument, . . .

Kill Argument =>

local, global, or structured system variable name

(local variable name,local variable name, . . .)

Removes specified variables, and all their array descendants.

Argumentless kill removes all local variables, and their array

descendants. An exclusive kill, a kill argument in the form of

a parenthesized list of local variables, removes all local

variables and their descendants, except those listed within the

parentheses and their descendants.

>K

>K PLAY,AUTHOR,^CANON("MOLIERE","TEMP")

>K (AUTHOR,WORK)

LOCK

lock:postcondition

lock:postcondition SignLockArgument:timeout, . . .

Sign => + or -

LockArgument =>

Name Reference

(NameReference,NameReference, . . .)

Gets and/or releases ownership of names. Argumentless

lock releases ownership of all names held by current process.

Names, like devices, can only be owned by one process at a

time. Ownership of a name includes all array descendants of

that name.

Locked names are logical names that look like local and

global names for convenience only. A name used as an

5 9

argument of a lock command does not change the naked

reference, nor can it be referred to by the naked reference.

Unlike devices, names can be used when not owned;

locking is a voluntary signaling mechanism, not a method for

preventing access. Locking a name does not prevent other

processes from accessing or manipulating variables with the

same names, only from successfully locking those names.

Mumps code should voluntarily lock names, especially global

names, whose simultaneous use by multiple processes would

lead to problems, such as loss of database integrity.

Each non-incremental lock argument (those without + or

-) first releases all names owned by this process, and then

gets ownership of the name specified. Incremental and

decremental lock arguments get (+) or release (-) ownership

of the specified names without releasing any other names. A

name incrementally locked multiple times must be

decrementally locked an equal number of times to release it.

A lock of a list of names enclosed by parentheses will not

succeed until all names listed are simultaneously available. A

nonincremental lock of a list of names will not release the

names owned by the process until it can simultaneously get

ownership of all the names in its list.

Timed lock sets $test to whether it got ownership of the

name in the time requested; network latency and other

extraneous delays are not counted in the timeout period. For

arguments without a timeout, lock waits indefinitely until the

name is released by whatever process owns it. Improperly

coded, this can result in a deadly embrace, in which two

processes stop execution at lock commands because each

owns names for which the other is waiting.

>L

>L ^CANON("MILTON")

>L (CRITIC,^CANON("JOHNSON"))

6 0

>L ^CANON("GOETHE"):2

>L +^CANON("AUSTEN")

>L -^CANON("WORDSWORTH")

MERGE

merge:postcondition Variable=Variable, . . .

Variable =>

global, local, or structured system variable

Copies the value and all array descendants from one variable

to another variable. If either variable is an array descendant of

the other, it causes error m19.

>M WHITMAN=^CANON("WHITMAN")

NEW

new:postcondition

new:postcondition NewArgument, . . .

New Argument =>

local variable name

(local variable name,local variable name, . . .)

$estack

$etrap

Saves and temporarily removes locals and their array

descendants, and restores them when this block of code

ends. Argumentless new saves and temporarily removes all

locals and their array descendants, and restores them when

this block of code ends.

Only unsubscripted local variables or the intrinsic special

variables $estack and $etrap may be used in the argument of

the new command. An exclusive new, a new argument

consisting of a list of names within parentheses, saves and

temporarily removes all locals, except those listed and their

descendants.

>N

61

>N DICKENS,ELIOT

>N (TOLSTOY,IBSEN)

OPEN

open:postcondition Device:OpenParameters, . . .

Open Parameters =>

DeviceParameters:timeout:MnemonicSpecs

Device Parameters =>

Device Parameter

 (Device Parameter:Device Parameter: . . .)

Device Parameter =>

vendor-specific expression

Device Keyword

Device Attribute=expression

Mnemonic Specs =>

Mnemonic Space

(Mnemonic Space,Mnemonic Space, . . .)

Gets ownership of an i/o device, selects the list of available

mnemonic spaces for that device, and sets the current

mnemonic space to the first in the list selected. Open can also

use device parameters to manipulate the device as it is

acquired. Trying to open a device with a mnemonic space it

doesn’t support causes error m35; trying to open it with

incompatible mnemonic spaces causes error m36. Timed open

sets $test to whether it got ownership in the specified time.

[Implementation-specific OPEN parameters and nonstandard

mnemonic spaces are not portable.]

>O LOGFILE,PRINTER::60 E D FAIL Q

>O:AUTHOR="DICKINSON" "MIND":("NEW"):1

>O DISPLAY:::"X3.64"

QUIT

quit:postcondition

6 2

quit:postcondition Expression

Ends the current process level and returns a value; doing so

when an argument is not expected causes error m16.

Argumentless quit ends the current process level without

returning a value, but if one is expected it causes error m17.

Quit can also be used to end a for loop on the same line.

>Q

>Q "FREUD"

>S AUTHOR="PROUST",NAME="AUTHOR" Q @NAME

READ

read:postcondition ReadArgument, . . .

ReadArgument =>

String Literal

Formatting String

*Variable:timeout

Variable#ReadCount:timeout

Formatting String =>

FeedsTab

/ControlMnemonic(expression,expression, . . .)

Feeds => !s (line feeds) or #s (form feeds)

Tab => ? followed by column number

Variable =>

local, global, or structured system variable

ReadCount => integer expression

Gets input from the current i/o device and puts the response

in the specified variables. Any text and format control

characters in the argument of the read command are output

on the current device. Timed read sets $test to whether read

got a response in the specified time.

When the argument contains an asterisk preceding a

variable name, a code representing a single character is

obtained. When the argument contains a variable followed by

6 3

a "#" and a numeric expression, this expression specifies the

maximum number of characters to accept. A number less

than zero causes error m18. [The codes returned by READ * are

defined by the MUMPS implementor and not portable. Use of

nonstandard control mnemonics is not portable.]

>R #!!,AUTHOR,!?5,WORK

>R *CODE

>R !,NAME#10

>R "NAME:",AUTHOR G PORTRAIT:AUTHOR="JOYCE"

>R !?10,"WOOLF?",YES:30 I '$T W !,"AFRAID?"

SET

set:postcondition SetDestination=Expression, . . .

Set Destination => SetLeft or (SetLeft,SetLeft, . . .)

Set Left =>

local, global, or structured system variable

$device or $key or $x or $y

$ecode or $etrap

$extract(string,from,to)

$piece(string,delimiter,from,to)

Puts values into variables. When the set destination is a list of

destinations within parentheses, each destination is given the

value following the assignment symbol. The $extract and

$piece destinations change the specified part of their first

arguments. Trying to set $x or $y to a negative or non-integer

value causes error m43.

>S AUTHOR="KAFKA",STORY="METAMORPHOSIS"

>S AUTHOR="BORGES",^CANON(AUTHOR)=1

>S (AUTHOR,CURRENT,^CANON("ACTIVE"))="NERUDA"

>S $ET="TRAP^CANON",$EC=",U42,"

>S $P(^CANON("PESSOA"),"^",3)="MENSAGEM"

>S $E(^CANON("CRITIC"),1,20)=$J("BLOOM",20)

6 4

TCOMMIT

tcommit:postcondition

Commits and ends the current transaction: makes its global

changes visible. A tcommit when there is no current

transaction causes error m44.

>TC:AUTHENTC

TRESTART

trestart:postcondition

Rolls back the current transaction (see trollback), optionally

restores some or all of the symbol table (as dictated by the

tstart command, see below), and starts the current

transaction again. Attempting to restart a non-restartable

transaction rolls back the transaction, ends it, and causes error

m27. A trestart when there is no current transaction causes

error m44.

>TRE:MISSING

TROLLBACK

trollback:postcondition

Rolls back a transaction; that is, undoes its global changes and

releases any locks acquired within the transaction. A

trollback when there is no current transaction causes error

m44.

>TRO:CANCEL

TSTART

tstart:postcondition

tstart:postcondition Variables:TransParameters

Variables =>

local variable name

(local variable name,local variable name, . . .)

* or ()

6 5

Transaction Parameters =>

Parameter

(Parameter:Parameter: . . .)

Parameter =>

serial

transactionid=expression

z . . . =expression

Starts a restartable transaction. Argumentless tstart starts a

nonrestartable transaction. When variables are specified, they

are restored to their previous values if the transaction is

restarted. [Use of transaction parameters starting with Z is not

portable.]

>L ^CANON("UPDATE") TS

>TS:OK :T="BECKETT"

>TS (CHANGES,VALUES):(S:T="HOMER")

USE

use:postcond Device:DeviceParams:MnemSpace, . . .

Device Parameters =>

Device Parameter

 (Device Parameter:Device Parameter: . . .)

Device Parameter =>

vendor-specific expression

Device Keyword

Device Attribute=expression

Picks the current device from the list of i/o devices owned by

the current process, and the device’s mnemonic space from

the list currently available for that device. Use can also use

device parameters to manipulate the current device as it is

selected. [Implementation-specific USE parameters and

nonstandard mnemonic spaces are not portable.]

>U:AUTHOR="HERODOTUS" "LOG.TXT"

>U:AUTHOR="THUCYDIDES" HISTORY::"X3.64"

6 6

VIEW

view:postcondition ViewArgument

Returns or changes implementation-dependent information.

[Arguments and behavior of VIEW are nonstandard.]

>VIEW:AUTHOR="PLATO" MEMORY

WRITE

write:postcondition WriteArgument, . . .

WriteArgument =>

Expression

Formatting String

*Character Code

Formatting String =>

FeedsTab

/ControlMnemonic(expression,expression, . . .)

Feeds => !s (line feeds) or #s (form feeds)

Tab => ? followed by column number

Variable =>

local, global, or structured system variable

Formats and outputs values to the current i/o device. When

an argument includes an asterisk followed by an integer value,

one character whose code (not necessarily ascii) is the

number represented by the integer is sent to the current

device; the effect this code has on the device is

implementation-specific. [The codes used by WRITE * are

defined by the MUMPS implementor and not portable. Use of

nonstandard control mnemonics is not portable.]

>W "SOPHOCLES"

>W #!!?15,"EURIPIDES: ",PLAY

>W *7

>W !,^CANON("ACTIVE"),?30,WORK

67

XECUTE

xecute:postcondition Expression:postcondition, . . .

Interprets and executes a value as mumps text. Xecute

provides a means of interpreting a data value created during

program execution as if it were mumps code. Each argument

of the xecute command is interpreted as if it were the text

part of a line of mumps code (without label, line start indicator,

or line level indicator).

>X "S AUTHOR=""ARISTOTLE"""

Z . . .

All implementation-specific command names begin with z.

[Commands whose names begin with Z are not portable.]

For more information on commands, see chapter 8 of MUMPS

1995.

6 8

9 ! C H A R A C T E R S E T P R O F I L E S

Mumps systems can be assigned a default character set

profile; individual processes, globals, devices, and routines

can be assigned their own character sets. Structured system

variables define these defaults and assignments.

9 .1 ! C H A R A C T E R S E T S A S C I I & M

Ascii and m operate upon the same set of characters—the

seven-bit ascii character set—and use the same pattern code

definitions, but differ in their collation algorithms.

Ascii collates in strict ascii numeric order applied lexically.

That is, 1 collates before 2, but so do 12 and "1A", just as "A"

collates before "AB" which collates before "B".

M collates the same except that canonical numbers

collate numerically ahead of all other strings. To use the

previous example, "A", "AB", and "B" will collate the same

as they do in the ascii character set, but 2 collates ahead of 12,

and all three numbers collate before the string "1A".

9.1 . 1 ! Table of Ascii/M Char acters

char codes

0 nul c,e

1 soh c,e

2 stx c,e

3 etx c,e

4 eot c,e

5 enq c,e

6 ack c,e

7 bell c,e

8 bs c,e

9 ht c,e

10 lf c,e

char codes

11 vt c,e

12 ff c,e

13 cr c,e

14 so c,e

15 si c,e

16 dle c,e

17 dc1 c,e

18 dc2 c,e

19 dc3 c,e

20 dc4 c,e

21 nak c,e

char codes

22 syn c,e

23 etb c,e

24 can c,e

25 em c,e

26 sub c,e

27 esc c,e

28 fs c,e

29 gs c,e

30 rs c,e

31 us c,e

32 sp p,e

6 9

char codes

33 ! p,e

34 " p,e

35 # p,e

36 $ p,e

37 % p,e

38 & p,e

39 ' p,e

40 (p,e

41) p,e

42 * p,e

43 + p,e

44 , p,e

45 - p,e

46 . p,e

47 / p,e

48 0 n,e

49 1 n,e

50 2 n,e

51 3 n,e

52 4 n,e

53 5 n,e

54 6 n,e

55 7 n,e

56 8 n,e

57 9 n,e

58 : p,e

59 ; p,e

60 < p,e

61 = p,e

62 > p,e

63 ? p,e

64 @ p,e

char codes

65 A a,u,e

66 B a,u,e

67 C a,u,e

68 D a,u,e

69 E a,u,e

70 F a,u,e

71 G a,u,e

72 H a,u,e

73 I a,u,e

74 J a,u,e

75 K a,u,e

76 L a,u,e

77 M a,u,e

78 N a,u,e

79 O a,u,e

80 P a,u,e

81 Q a,u,e

82 R a,u,e

83 S a,u,e

84 T a,u,e

85 U a,u,e

86 V a,u,e

87 W a,u,e

88 X a,u,e

89 Y a,u,e

90 Z a,u,e

91 [p,e

92 \ p,e

93] p,e

94 ^ p,e

95 _ p,e

96 ` p,e

char codes

97 a a,l,e

98 b a,l,e

99 c a,l,e

100 d a,l,e

101 e a,l,e

102 f a,l,e

103 g a,l,e

104 h a,l,e

105 i a,l,e

106 j a,l,e

107 k a,l,e

108 l a,l,e

109 m a,l,e

110 n a,l,e

111 o a,l,e

112 p a,l,e

113 q a,l,e

114 r a,l,e

115 s a,l,e

116 t a,l,e

117 u a,l,e

118 v a,l,e

119 w a,l,e

120 x a,l,e

121 y a,l,e

122 z a,l,e

123 { p,e

124 | p,e

125 } p,e

126 ~ p,e

127 del c,e

7 0

9 . 2 ! C H A R A C T E R S E T J I S 9 0

Jis90, a character set for representing Japanese characters, is

described in two separate standards: Japanese Industrial

Standard JIS X0201-1990 8-bit coded character sets for information

interchange, and Japanese Industrial Standard JIS X0208-1990 8-

bit double byte coded KANJI sets for information interchange.

MUMPS 1995 Annex H describes the relationship between

these two standards within jis90, their pattern codes and

collation, and which characters may be included within mumps

names (variables, routines, labels, etc.).

71

3 COLOPHON 1

The first printing of this book was designed and set into type

in 1995 in Seattle by the author in Bitstream’s ITC Friz Quadrata

(Flareserif 861) and Monotype’s Courier New, using Microsoft

Word version 6.0a on Intel 386 and 486 machines.

The author reset the second printing in 2010 using

Neooffice 3.0 on a Macintosh Macbook Pro; his goals were

(1) to update the software format, (2) to convert its styles to

create a navigation outline for the portable-document format,

and (3) to update the layout and design to be more readable,

restful on the eyes, and typographically coherent.

The text face is Friz Quadrata version 2.00. Swiss designer

Ernst Friz created it in 1965 as a solo Roman face for Visual

Graphics Corporation. New York designer Victor Caruso

added the bold face for International Typeface Corporation’s

(itc) 1973 release. French designer Thierry Puyfoulhoux added

the italic and bold italic faces for itc in 1992. Friz Quadrata is a

spur-serif typeface legible enough for setting extended text;

its clean lines and precision suit it to formal engineering texts

like this pocket guide, but its open counters help breathe life

and character into the text. The English text is set 8/14.

The code face is Courier 10 Pitch (Fixed

Pitch 810) version 1.01, developed by Howard

“Bud” Kettler in Lexington in 1955 for IBM

typewriters and digitized by Bitstream in the

1980s. Designed to give dignity to official

documents, Courier has become the most famous

monospaced typeface; most software is printed in

Courier. Courier 10 Pitch’s color blends better

with text faces than Courier New (which is far

too light). The MUMPS text is set 8/14.

h

About the author

Frederick D. S. Marshall founded the Vista Expertise Network,

cofounded WorldVistA, is vice-chair of the Mumps

Development Committee, and is a tier-five, master-hardhat

vista developer who has implemented, programmed, written

about, taught about, and strategized about vista for twenty-

six years.

4)MUMPS)`)BOOKS)$

an imprint of

the Vista Expertise Network

819 north 49th street, suite 203

seattle, washington 98103-6576

info@vistaexpertise.net

www.vistaexpertise.net

(206) 632-0166

V I S t C

E X P E R T I S E N E T W O R K

	CONTENTS
	1 · INTRODUCTION
	1.1 · PURPOSE
	1.2 · ACKNOWLEDGMENTS

	2 · OTHER REFERENCES
	3 · THE SUITE OF STANDARDS
	4 · SYSTEM MODEL
	4.1 · MULTI-PROCESSING
	4.2 · DATA
	4.3 · CODE
	4.4 · ENVIRONMENTS
	4.5 · PACKAGES
	4.6 · CHARACTER SETS
	4.7 · INPUT/OUTPUT DEVICES

	5 · SYNTAX
	5.1 · METALANGUAGE ELEMENT INDEX

	6 · ROUTINES
	6.1 · ROUTINE STRUCTURE
	6.2 · LINES
	6.3 · LINE REFERENCES
	6.4 · EXECUTION
	6.4.1 · The Process Stack
	6.4.2 · Block Processing
	6.4.3 · Error Codes

	7 · EXPRESSIONS
	7.1 · VALUES
	7.1.1 · Representation
	7.1.2 · Interpretation

	7.2 · VARIABLES
	7.2.1 · Local Variables
	7.2.2 · Global Variables
	7.2.3 · Special Variables

	7.3 · STRUCTURED SYSTEM VARIABLES
	7.3.1 · List of Structured System Variables
	^$CHARACTER (character-set-profile name)
	^$DEVICE (device ID)
	^$GLOBAL (global variable name)
	^$JOB (process ID)
	^$LOCK (name reference)
	^$ROUTINE (routine name)
	^$SYSTEM (system ID)
	^$Z . . . (vendor-specific value)

	7.4 · EXTRINSIC VARIABLES & FUNCTIONS
	7.5 · EXTERNAL VARIABLES & FUNCTIONS
	7.6 · INTRINSIC SPECIAL VARIABLES
	7.6.1 · List of Intrinsic Special Variables
	$DEVICE
	$ECODE
	$ESTACK
	$ETRAP
	$HOROLOG
	$IO
	$JOB
	$KEY
	$PRINCIPAL
	$QUIT
	$STACK
	$STORAGE
	$SYSTEM
	$TEST
	$TLEVEL
	$TRESTART
	$X
	$Y
	$Z...

	7.7 · INTRINSIC FUNCTIONS
	7.7.1 · List of Intrinsic Functions
	$ASCII
	$CHAR
	$DATA
	$EXTRACT
	$FIND
	$FNUMBER
	$GET
	$JUSTIFY
	$LENGTH
	$NAME
	$ORDER
	$PIECE
	$QLENGTH
	$QSUBSCRIPT	
	$QUERY
	$RANDOM
	$REVERSE
	$SELECT
	$STACK
	$TEXT
	$TRANSLATE
	$VIEW
	$Z...

	7.8 · OPERATORS
	7.8.1 · List of Operators
	+
	-
	+
	-
	*
	
	\
	#
	**
	<
	>
	_
	=
	[
]
]]
	?
	&
	!
	'
	@

	7.8.2 · Pattern Matching
	7.8.3 · Indirection

	8 · COMMANDS
	8.1 · GENERAL RULES	
	8.1.1 · Basic Syntax
	8.1.2 · Post-conditionals (Command/Argument)
	8.1.3 · Timeouts
	8.1.4 · Parameter Passing

	8.2 · LIST OF COMMANDS
	BREAK
	CLOSE
	DO
	ELSE
	FOR
	GOTO
	HALT
	HANG
	IF
	JOB
	KILL
	LOCK
	MERGE
	NEW
	OPEN
	QUIT
	READ
	SET
	TCOMMIT
	TRESTART
	TROLLBACK
	TSTART
	USE
	VIEW
	WRITE
	XECUTE
	Z . . .

	9 · CHARACTER SET PROFILES
	9.1 · CHARACTER SETS ASCII & M
	9.1.1 · Table of Ascii/M Characters

	9.2 · CHARACTER SET JIS90

	3 COLOPHON 1

